非齐次线性方程组的通解 如何求解

文/红雄王一
专题:如何

非齐次线性方程组的通解‌可以表示为齐次线性方程组的通解加上一个非齐次线性方程组的特解。求解方式为对增广矩阵作初等行变换化为阶梯形矩阵;求导出组的一个基础解系;求方程组的一个特解;按解的结构写出通解。

非齐次线性方程组的通解怎么求解

非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。

一、扩展资料

非齐次线性方程组(Nonhomogeneous linear equations),是指常数项不全为零的线性方程组,表达式为Ax=b。

二、解法

1.对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

2.若R(A)=R(B),则进一步将B化为行最简形。

3.设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示。

三、解的存在性

有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A,b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩。

求非齐次线性方程组解的注意事项

求非齐次线性方程组解的注意事项主要包括以下几个方面‌:

首先,‌有解的条件‌是非齐次线性方程组有解的充分必要条件是系数矩阵的秩等于增广矩阵的秩,即rank(A) = rank(A, b)rank(A)=rank(A,b)。如果rank(A) < nrank(A)<n,则方程组有无穷多解;如果rank(a) ="nrank(a)="n,则方程组有唯一解‌。

其次,‌通解的结构‌是非齐次线性方程组的通解可以表示为齐次线性方程组通解加上非齐次线性方程组的一个特解,即\eta = \zeta + \eta^*η=ζ+η∗。这是理解非齐次线性方程组解的关键‌。

最后,‌求解步骤‌包括以下几个步骤:

‌写出增广矩阵‌:根据非齐次线性方程组写出增广矩阵。

‌化简增广矩阵‌:将增广矩阵通过初等行变换化为最简形式。

‌求出特解‌:根据化简后的增广矩阵求出一个特解。

‌求出齐次线性方程组的通解‌:求解对应的齐次线性方程组,得到通解。

‌写出通解‌:将特解和齐次线性方程组的通解相加,得到非齐次线性方程组的通解‌。

小编推荐

1.高职单招录取查询入口 如何查询单招录取结果

2.如何提高高中生英语写作水平 从几个方面入手?

3.艺考培训学校推荐 如何选择靠谱机构

4.高中一对一在线辅导哪个好 如何选择

5.如何提高高中生英语听力 从哪几个方面入手?

6.2024出国留学申请日期怎么填 申请理由如何写

7.优秀200字作文大全 如何写好作文

8.艺术生出国留学的条件有哪些 如何申请留学

一键复制全文保存为WORD

猜你喜欢

高中数学技巧解题秒杀 实用解题技巧整理

24-10-29

高一数学考30分还有救吗 基础差怎么提分

24-10-29

有数学天赋的孩子特征是什么 哪些人适合学数学

24-10-28

余弦定理求三角形面积公式是什么 余弦定理性质

24-10-28

特殊角的三角函数值表是什么 怎么记忆

24-10-25

二项分布和超几何分布的区别 二者有何不同

24-10-25

学好高中数学的32个技巧 哪些方法有效果

24-10-25

等腰三角形求底边公式 性质是什么

24-10-25