复数的几何意义是什么 概念是什么

文/南瓜

复数的几何意义是指复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系。复数的几何意义,是指复数z=a+bi(a、b∈R),一一对应复平面内的点Z(a,b)。其中,在复平面内,复数的实部(a)是其对应点的横坐标,复数的虚部(b)是其对应点的纵坐标。

复数的几何意义

复数的几何意义是:复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。

复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

复数的运算方法

(1) 加法

复数相加,实部与实部相加,虚部与虚部相加,即(z1+z2) = (a1+a2) + (b1+b2)i。

(2) 减法

复数相减,实部与实部相减,虚部与虚部相减,即(z1-z2) = (a1-a2) + (b1-b2)i。

(3) 乘法

复数相乘,按照分配律展开,得到(z1*z2) = (a1a2 - b1b2) + (a1b2 + a2b1)i。

(4) 除法

复数相除,先将除数分母有理化,然后按照复数乘法的运算法则进行运算。

(5) 共轭复数

复数的共轭复数,把虚部取相反数得到,即z* = a - bi。

(6) 模长

复数的模长,即复数点到原点的距离,用|z|表示。

复数的概念介绍

复数是指把形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位。当 z 的虚部 b=0 时,则 z 为实数;当 z 的虚部 b≠0 时,实部 a=0 时,常称 z 为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

复数的分类:

1、复数可以分为两类数:实数、虚数。

2、所有实数和所有虚数构成了所有的复数,复数不含实数、虚数之外的数。

3、实数、虚数都是复数;不存在既是实数,又是虚数的复数;任何一个复数,不属于实数就属于虚数,二者必居其一。

小编推荐

1.巴黎高等文化艺术管理学院申请条件是什么 好考吗

2.2025合肥师范学院中外合作办学专业有哪些 代码是什么

3.2025年370分在江苏上什么大学好 近三年录取分数线是多少

4.2025年518分能考什么民族类大学 哪些大学值得报

5.2025年547分在云南上什么大学好 近三年录取分数线是多少

6.波士顿音乐学院录取要求是什么 怎么提高录取率

7.2025年高考志愿填报时间什么时间 几天结束

8.2025江西物化生453分左右能上什么大学 可以报考的院校名单

一键复制全文保存为WORD

猜你喜欢

如何提高高中数学成绩 学习方法技巧有哪些

24-12-03

高三数学20分怎么补 学习方法有哪些

24-11-28

高三数学零基础怎么补救 学习技巧有哪些

24-11-21

高二数学不好怎么补救 有哪些学习方法

24-11-21

高中数学成绩太差怎么办 怎么提高成绩

24-11-21

高中数学提分技巧 如何提高成绩

24-11-21

高中数学怎么提分 高效学习方法有哪些

24-11-21

提高高中数学成绩的最好方法 有什么技巧

24-11-21